A NEW CLASS OF GRACEFULL TREES

A. SOLAIRAJU¹ and N. ABDUL ALI²

¹⁻²: P.G. & Research Department of Mathematics, Jamal Mohamed College, Trichy – 20.

¹email: <u>solairama@yahoo.co.in;</u> ² email: abdul_ali_2003@yahoo.com

Abstract : The gracefulness of Tp-tree of size (5n, 5n-1) is obtained

Introduction:

Most graph labeling methods trace their origin to one introduced by Rosa [2] or one given Graham and Sloane [1]. Rosa defined a function f, a β -valuation of a graph with q edges if f is an injective map from the vertices of G to the set {0, 1, 2 ,...,q} such that when each edge xy is assigned the label |f(x)-f(y)|, the resulting edge labels are distinct.

A. Solairaju and K. Chitra [3] first introduced the concept of edge-odd graceful labeling of graphs, and edge-odd graceful graphs.

A. Solairaju and others [5,6,7,8,9] proved the results that(1) the Gracefulness

of a spanning tree of the graph of Cartesian product of P_m and C_n ,was obtained (2) the Gracefulness of a spanning tree of the graph of cartesian product of S_m and S_n , was obtained (3) edge-odd Gracefulness of a spanning tree of Cartesian product of P_2 and C_n was obtained (4) Even -edge Gracefulness of the Graphs was obtained (5) ladder $P_2 \ge P_n$ is even-edge graceful, and (6) the even-edge gracefulness of $P_n \ge nC_5$ is obtained.

Section I : Preliminaries

Definition 1.1: Let G = (V,E) be a simple graph with p vertices and q edges.

A map f :V(G) \rightarrow {0,1,2,...,q} is called a graceful labeling if

(i) f is one - to - one

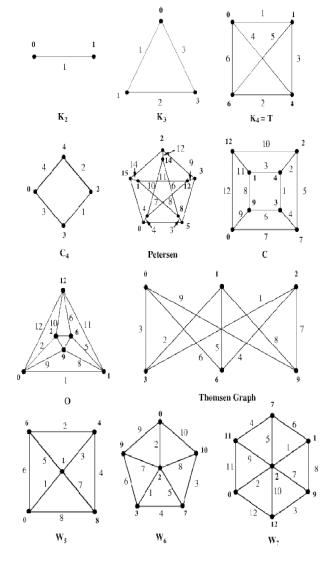
(ii) The edges receive all the labels (numbers) from 1 to q where the label of an edge is the absolute value of the difference between the vertex labels at its ends.

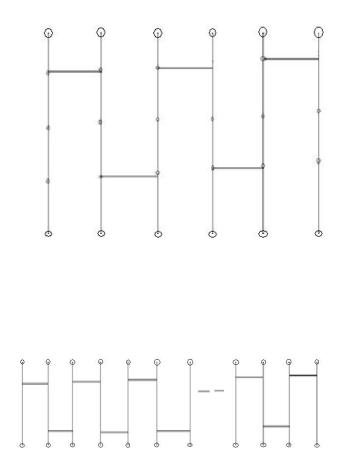
A graph having a graceful labeling is called a graceful graph.

Example 1.1: The circuit C₄ is a graceful

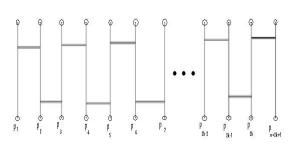
graph as follows:

Definition 2.1: $n \Delta P_5$ is a tree, becoming a path by moving edges between vertices of degree 3 defined in the following manner only. That is, it is a T_p -tree obtained from n copies of P5, and connected acyclic in the following manner.

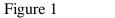




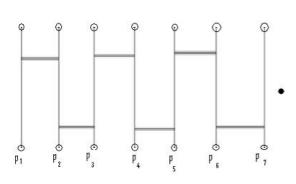
Section – II: Tp–(5n, 5n-1) tree



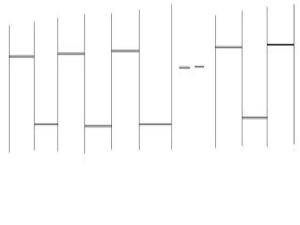
Proof: Due to definition (2.1), Tp–(5n,5n-1) is a connected graph (see figures 1 and 2) according as n is odd or even.



(n is odd)

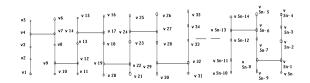


(n is even)



Ca

The labelings of vertices and edges for Tp-(5n,5n-1) (Figure 1) are as follows:



Define f: v(G) \rightarrow {0,1,2,...q)

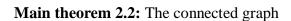


Figure 2

Tp-tree with p=5n and q=5n-1 is graceful.

$$f(vi) = \frac{i \cdot 1}{2}$$
, $i = 2, 45...5n$

$$f(vi) = -q - \left(\frac{i\cdot 1}{2}\right) \quad ; \qquad \qquad i = 1,3.5...5n \cdot 1$$

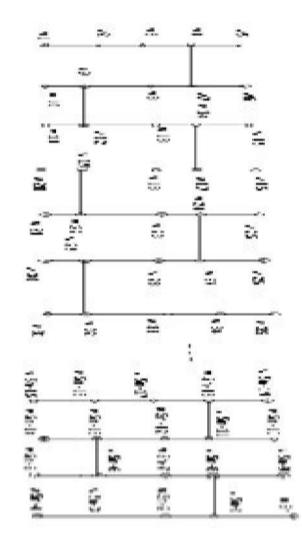
Define $f_{+}:E(G) \rightarrow \{1,2,3..q\}$ by $f_{+}(u,v)=$ $|f(u)-(v)|, \forall u,v \in E(G).$

Hence, the bisection maps f for vertices and f_* for edges in Tp–(5n,5n-1) satisfies all

condition of graceful labeling. Thus, Tp– (5n,5n-1) is a graceful if n is odd.

Case (2): n is even.

The labeling of vertices and edges for Tp– (5n,5n-1) (Figure 2) are as follows:



Define f: v(G) \rightarrow {0,1,2,...q)

By

$$f(vi) = \frac{i \cdot 1}{2} \qquad ; \qquad i = 1,3,5...,5_{H} \cdot 1$$

$$f(vi) = -q - \left(\frac{i \cdot 1}{2}\right) \qquad ; \qquad i = 2,4,6...,5_{H}$$

4

Define $f_+: E(G) \rightarrow \{1,2,3..q\}$ by $f_+(u,v) =$ $|f(u)-(v)|, \quad \forall u,v \in E(G).$

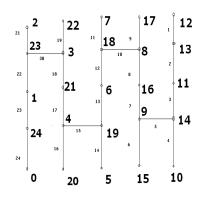
Hence, the bisection maps f for vertices and f_+ for edges in Tp–(5n,5n-1) satisfies all the conditions of graceful labeling. Thus, Tp–(5n,5n-1) is a graceful if n is even.

Corollary 2.3: Tp–(5n,5n-1) is a graceful

tree

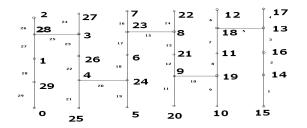
Example 2.1 :

The graph $5 \Delta P_5$ is a graceful graph.



Example 2.2:

The graph $6 \Delta P_5$ is a graceful graph.



_References:

- 1. R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graph, SIAM J. Alg. Discrete Math., 1 (1980) 382 404.
- 2. A. Rosa, On certain valuation of the vertices of a graph, Theory of graphs (International Synposium,Rome,July 1966),Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.
- 3. A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics Volume 33, April 2009, Pages 1.

- A. Solairaju and P.Muruganantham, even-edge gracefulness of ladder, The Global Journal of Applied Mathematics & Mathematical Sciences(GJ-AMMS). Vol.1.No.2, (July-December-2008):pp.149-153.
- 5. A. Solairaju and P.Sarangapani, even-edge gracefulness of $P_{n O}$ nC₅, Preprint (Accepted for publication in Serials Publishers, New Delhi).
- 6. A.Solairaju, A.Sasikala, C.Vimala Gracefulness of a spanning tree of the graph of product of P_m and C_n, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136.
- 7. A.Solairaju, A.Sasikala, C.Vimala, Edge-odd Gracefulness of a spanning tree of Cartesian product of P_2 and C_n . The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, (Preprint).
- 8. A. Solairaju, C. Vimala, A. Sasikala Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp117-120.
- 9. A.Solairaju, C.Vimala, A.Sasikala , Even Edge Gracefulness of the Graphs, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, (Preprint).